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The stability of parallel-connected boiling channels is examined in
the case of slight deviations from stationary equilibrium conditions.
The conditions for stability are deduced and the influence of the
parameters on the location of the stability limits is defined.

The stability of a system of boiling channels was
examined in [1], where the pressure drops in the
heated part of the parallel channels were considered
negligible as compared with the pressure drops in the
unheated parts.

Fig. 1. Block diagram of the system of parallel
boiling channels. (1,2 are the external parts of
the system.)

This paper deals with the stability under stationary
conditions of a system (Fig. 1) consisting of parallel
boiling channels and external {upstream and down-
stream) parts for any ratio of the pressure drops in
the heated part of the channels (be) and in the resis-
tances (ab), (cd) lumped at the ends of the channels.
The external parts (1, 2) of the system may represent
pumps, pipes, or turbines, Pressure at the inlet and
outlet of the system is assumed constant, while the
heat flux supplied to each of the boiling channels is
assumed sufficient to effect the complete evaporation
of the liquid entering the channel. ,

To simplify the system of partial differential equa-
tions describing the process of heat and mass trans-
fer in the boiling channels, the following assumptions
were made:

1. The temperature of the external heater, and the
density and specific heat of the liquid and the vapor
are constant.

2. In the evaporating zone the volume of liquid is
negligibly small in comparison with the volume of
vapor. The mean velocity of the mixture in the evap~

orating zone is assumed to be equal to the velocity
of the vapor at the outlet. (In the range of working
conditions of practical interest, this assumption
results in a certain reserve of stability.)

3. The heat transfer coefficient for the walls of the
boiling channels is constant, and their specific heat
is negligibly smail.

The following boundary conditions were used:

1. The temperature of the liquid flowing into the
inlet of the boiling channel is constant.

2. The pressure in the inlet header is given.

The boiling channels are assumed to be identical,
i.e., the magnitudes of all the parameters character-
izing the stationary regime are taken to be independent
of the number j of the channel.

In the case of small deviations from the stationary
equilibrium state, the equations of heat and mass
transfer are solved in the same way as in [1]. With
the above assumptions and boundary conditions, the
solution of these equations (length of economizer zone
and vapor velocity at outlet of boiling channel as func-
tions of liquid velocity at channel inlet and saturation
pressure) can be written as follows:
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Neglecting the inertia properties of the external
parts of the system, we can represent the relation
between the pressure drop across these parts and
the mass flow rate in the form of certain functions
p,(G*) and p,(G*). Linearizing these relations and
assuming turbulent self-gimilar flow conditions in
the channel, we obtain
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The linearized equations of motion of liquid and
vapor in the boiling channels are written thus:
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Then the characteristic equation of the system, ob-
tained from the condition that there exist a nontrivial
solution to Egs. (1)—(5), has the following form (¥,
defines the stability of the system in the small with

respect to interchannel pulsation, F, with respect
to pulsation in the boiler as a whole):

(F) =0
F,=—A, 1 —exp(— ML+ B, A+ Crexp(—hr)+ 1,
Ay = (1 =) O /@1, + o m ) (D1, + 9Ds,); By = Ay, 9y
C,=A,om, Do, /Dy,; m, =2V, n=1,12;

Oy =Uy +Us; ©p=0n+Vy
My = Uy LUy, Mg = Oy, -+ Vs, (6)

Thus, the stability analysis reduces to a study of the
roots of the equation
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Fig. 2. Qualitative picture of the
D-partition of the space of the
parameters &,, ¢,, m,

Carrying out a D-partition of the space of the param-
eters A, B, C, we find that the characteristic equa-
tion (7) does not have roots with a positive real part
if parameters A, B, C belong to the region M
bounded by the surface of the D-partition
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¥ig. 3. Influence of the parameter ¢

on the location of the boundary of the

stability region Dy: 1) with &, = &,,

Petrov's criterion; with o= 0; 3) o=
=0.079.

The question of which of the sides of the bounding sur-
faces is external to the region M is determined by
the hatching rule {2].

It is necessary to note that the stability region
obtained cannot be fully realized in the system in-
vestigated, because the assumptions employed re-~
strict the set of permissible values of the parameters.
These restrictions reduce to satisfaction of the con-
dition

il'1> 1.
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Since the parameters @,, &, m are more convenient
for engineering calculations, it is expedient to map
the stability region M into the space @, %, m at a
fixed value of g €(0,1). From (6) we obtain the fol-
lowing conversion formulas:

mt+mlA-B+oC* —(1—a)CYACo + B/As=0;
®, = B/C, ®,=B/mAo. (10)

We shall consider only physically realizable
parameters,

O, >0, ®,>0. (11)

Then the boundary surface of the D-partition of the
space of the parameters &, ®,, m, a qualitative pic-
ture of which is given in Fig. 2, is determined from
(8), (10) with 0 = w <. For a given m each section
of the space &,, ¢,, m, constitutes a mapping of the
surface of intersection of the space A, B, C with the
ruled surface defined by the equation

B =mC{{l —c/(C - mA)—a]. (12)
As follows from (8), (9), (11), and (12), there exists

a value m* = (1 — 0)/¢ such that for m < m* the sta-
bility region is bounded both by the surface of the
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D-partition and by the singular surface w = 0 (when
m < m* both aperiodic and oscillatory instability are
possible), whereas for m > m* the stability region is
bounded only by the surface of the D-partition (when
m > m* ounly oscillatory instability can occur).

It will be shown that aperiodic instability will be
present in the system if and only if the operating point
(the point characterizing the stationary regime) lies
on the drooping branch of the static hydraulic char-
acteristic of the boiling channel.

Indeed, the eguation of the static hydraulic char-
acteristic can be written in the form

® = f(G, Pg), where & = &, + &,.
Then the condition for the absence of a drooping
branch is written
dd 0@ | 0D dP,
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Inequality (16) can be rewritten thus:
Uy
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o

At the same time, (14) coincides with the condition
requiring [as follows from (7)—(9)] that the departure
of the system from the stability region not be ac-
companied by the appearance of a zero root (aperiodic
instability).

Thus, aperiodic instabilily is possible only when
the operating point is located on the drooping branch
of the static hydraulic characteristic of the channel.

It follows from Egs. (8)—(12) that the cylindrical
surface &= &, (®,, m), whose generator is parallel
to the m axis, while its directrix coincides with the
boundary of the stability region at m = « (g = 0), lies
above (Fig. 2) the boundary surface of the D-partition
®; = ,(®,, m <+, w#0), Therefore to exclude
the possibility of oscillatory instability in the system
it is sufficient for the parameters &, and ¢, to be-
long to the region Dy, i.e.,

(@, @) C D, (15)

located in the first quadrant of the plane ®,, &, and
above the curve &, = @, (®,, m = «) defined by the fol-
lowing equations:

O, = sinw/w,

D, = — sino/w o -+ (1 — s)cos w],

%— -+ arccosl ¢ <o<n. (16)
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From (16) it follows that the location of the bound-
ary of the region Df depends only on the one param-
eter o, which is usually much less than unity. (It
also follows from (16) that the region D(T will occupy
the entire first quadrant of the plane &,, &,, if 6 =
= 1/2.) The magnitude of the parameter o has a
major influence on the location of the stability limit
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only when w is close to n/2, i.e., when &, > 1 (Fig.
%), For this reason, in most cases of practical
importance (&, <1, w = ), instead of (16) it is pos-
sible to use a much simpler relation of the form

@, =sinofa, O = —tgo/m,

/2 Lo m, a7

which is nevertheless sufficiently close to (16).

It will be noted that as w — m, the condition de-
termining the stability of the system in accordance
with formula (17) goes over into the familiar cri-
terion of P. A. Petrov [3].

The following conclusions may be drawn on the
basis of an analysis of the roots of the characteristic
equation (17):

1. The region of stability of the system grows with
increase in the pressure in the boiling channel and
the resistances lumped in the inlet part of the system
and at the inlet to the boiling channel, and with de-
crease in the heat transfer coefficient, subcooling
of the liquid at the channel inlet, and the resistances
lumped at the outlet from the boiling channel and in
the outlet part of the system.

2. The period of the oscillations occurring in the
systéem on departure from the stability region across
the boundary D-curve is of the same order of magni-
tude as the time taken by the liquid to pass through
the economizer zone.

Thus, to ensure stability of the stationary regime
in a system consisting of parallel-connected boiling
channels and external parts, it is sufficient if the fol-
lowing conditions are satisfied:

1. The points determining the stationary regime of
the system as a whole and of the individual channels
must be located on the ascending branches of the
corresponding static hydraulic characteristics.

2. The parameters ®, and ®, must belong to a
region Df; located in the first quadrant of the plane
(®,, ®,) and above the curve &; = &(®,, m = «), defined
by formula (16).

In conclusion, the authors would like fo take the
opportunity to express their thanks to E. F. Sabayev
for his valued advice.

NOTATION

P1,» Pa—pressures in the inlet and outlet headers, resp.; p;—pressure
beyond the resistance concentrated at the inlet end of the boiling
channel; pg—saturation pressure; py—pressure ahead of the resistance
concentrated at the outlet end of the boiling channel; G—mass flow
rate; W—velocity; y—density; k—heat transfer coefficient; c—specific
heat; 9—temperature; 9y and 9 temperature of external heater and
on saturation line; r—Ilatent heat of evaporation; s—area of channel
cross section; g—hydraulic friction coefficient; H—Ilength of heated
channel section; h, —length of economizer zone; N—number of
boiling channels; z—Laplace transformation parameter. Subscripts:
in—inlet; out—outlet; !~1liquid; v—~vapor; o—stationary value in
the neighborhood of which linearization is performed; A—deviation
of variable from its stationary value; Laplace transforms of variables
are denoted by a bar (m—transform of AW).
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